skip to main content


Search for: All records

Creators/Authors contains: "Athena Lin, Diana Summers"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The giant unicellular ciliate Stentor coeruleus can be cut into pieces and each piece will regenerate into a healthy, full-sized individual. The molecular mechanism for how Stentor regenerates is a complete mystery, however, the process of regeneration shows striking similarities to the process of cell division. On a morphological level, the process of creating a second mouth in a division or a new oral apparatus in regeneration have the same steps and occur in the same order. On the transcriptional level, genes encoding elements of the cell division and cell cycle regulatory machinery, including Aurora kinases, are differentially expressed during regeneration. This suggests that there may be some common regulatory mechanisms involved in both regeneration and cell division. If the cell cycle machinery really does play a role in regeneration, then inhibition of proteins that regulate the timing of cell division may also affect the timing of regeneration in Stentor. Here we show that two well-characterized Aurora kinase A+B inhibitors that affect the timing of oral apparatus regeneration. ZM447439 slows down the regeneration of the oral apparatus by at least one hour. PF03814735 completely suppresses the regeneration of the oral apparatus until the drug is removed. Here we provide the first direct experimental evidence that Stentor may harness the cell division machinery to regulate the sequential process of regeneration. 
    more » « less